

SSH Config

	Author:

	Ken Kundert

	Version:

	2.2.1

	Released:

	2023-11-08

Introduction

SSH Config generates an SSH config file adapted to the network you are currently
using. In this way, you always use the fastest paths available for your SSH
related activities (sshfs, email, vnc, mercurial, etc.). You can also easily
reconfigure SSH to make use of proxies as needed or select certain servers or
ports based on your location or restrictions with the network.

The following situations are supported:

	You may give the mac address or addresses for your router or routers and your
network will automatically be recognized.

	You can configure which hostname or IP address is used for a particular host
depending on which network you are on. In this way you always use the fastest
connection available for each host.

	You can specify that certain hosts are hidden behind other hosts, so that
a SSH proxy should be used to access them.

	You can specify port forwarding information for each host. Then, two SSH
configurations will be created for those hosts, one that includes port
forwarding and one that does not. That way, once the port forwards are
established, you can open additional shells on that host without SSH trying
to create conflicting port forwards.

	You can enter multiple hostnames or IP addresses and give their locations.
Then, if you specify your location, the closest server will be used
automatically.

	You can specify proxy configurations and specify that one should be used for
all hosts not on your current network.

	You can specify port restrictions and have SSH work around them if possible
(if your server supports alternative ports).

	You can configure a default location, proxy, or set of port restrictions for
each of your known networks.

	Once host names are defined, they do not change even though you are using
different configurations (different networks, locations, proxies, and port
restrictions). In this way you can hard code your host names in applications
such as Mercurial or Git, and they automatically adapt to your existing
network.

	The entire application, including the configuration files, are Python code,
so you have considerable freedom to change the configuration based on things
like the name of the machine or the user when generating the SSH config file.

Trivial Configuration

The hosts that you would like to connect to are described in the hosts.conf
file. A very simple hosts.conf file would look like this:

from sshconfig import HostEntry

class Zeebra(HostEntry):
 user = 'herbie'
 hostname = 'zeebra.he.net'

Hosts are described by directly subclassing HostEntry. Attributes are added
that are generally converted to fields in the SSH config file.

The contents of ~/.ssh/config are replaced when you run:

sshconfig

The above hosts.conf file is converted into the following SSH config file:

SSH Configuration for unknown network
Generated at 1:04 PM on 22 July 2014.

#
HOSTS
#

host zeebra
 user herbie
 hostname zeebra.he.net
 forwardAgent no

The transformation between a host entry in the hosts.conf file and the SSH
config file could be affected by the network you are on and any command line
options that are specified to sshconfig, but in this case it is not. Notice
that the class name is converted to lower case when creating the hostname.

In most cases, adding an attribute to the definition of your host simply results
in that attribute being added the the SSH configuration, so:

class Zeebra(HostEntry):
 user = 'herbie'
 hostname = 'zeebra.he.net'
 port = 22022

becomes:

host zeebra
 user herbie
 hostname zeebra.he.net
 port 22022
 forwardAgent no

Installation Requirements

You can download and install the latest
stable version of the code from PyPI [https://pypi.python.org] using:

pip3 install --user sshconfig

You can find the latest development version of the source code on
Github [https://github.com/KenKundert/sshconfig].

Requires in Python3.6 or later.

Related Software

AddSSHKeys [https://github.com/KenKundert/addsshkeys] is a Python utility
that allows you to add all of your SSH keys to your agent in one go.

Issues

Please ask questions or report problems on
Github Issues [https://github.com/KenKundert/sshconfig/issues].

Contents

	Command Reference

	Configuring

	Examples

	Releases

	Index

Command Reference

Common Command Line Arguments

Usage:

 sshconfig [options] [<command> [<args>...]]

Options:

 -l LOCATION, --location LOCATION specifies location
 -n NETWORK, --network NETWORK specifies the network
 -p PORTS, --ports PORTS specifies list of available ports
 -P NAME, --proxy NAME specifies the global proxy
 -q, --quiet suppress optional output

Specify the list of available ports as a comma separated list (no spaces). For
example, –ports=80,443.

Normally the network is determined automatically and need not be specified.

Run sshconfig help <command> for information on a specific command.

Run sshconfig help for list of available help topics.

Run sshconfig available to see available choices for proxies, locations, and
networks.

available – Show Available Option Choices

Usage:

sshconfig available

The --location, --network, and --proxies options all take values as
arguments that were specified in your configuration files. The available
command can be used to refresh your memory on what is available. It simply lists
out all available choices for each of the three categories. Specifically, it
lists the names and descriptions for all configured locations, networks and
proxies.

create – Create the SSH config file

Create an SSH config file.

Usage:

sshconfig [options]
sshconfig [options] create

Normally you can create your SSH config file using sshconfig create or
simply sshconfig. However, special circumstances may require that you
specify command line options so as to modify the generated config file to meet
your needs. For example, if you find yourself in a coffee shop that blocks port
22, you might create your SSH config file using:

sshconfig -p 443,80

This tells sshconfig to use port 443 or port 80 if available when generating
the SSH host entries.

Or perhaps you are traveling to the far east, you might want to use your server
in Tokyo rather than the ones back home:

sshconfig -l tokyo

find – Find an SSH host configuration

Find SSH host configurations whose names contains a substring.

Usage:

sshconfig find <text>

help – Show Helpful Information

Shows helpful information for each a command or a topic.

Usage:

sshconfig help
sshconfig help <command>
sshconfig help <topic>

Run sshconfig help for a list of available commands and topics.

show – Show a SSH Host Configuration

Usage:

sshconfig [options] show <name>

Shows the SSH host entry to be generated given a host name. This can be used to
show you how the host entry changes based on various options such as
--ports. This command does not affect your SSH config file.

version – Show SSHConfig Version

Usage:

sshconfig version

Configuring

The configuration of sshconfig involves several files contained in
~/.config/sshconfig directory. Specifically, hosts.conf, locations.conf,
networks.conf, proxies.conf, and ssh.conf.

networks.conf

This file defines your known networks. It need not define all the networks you
use, only those where you would like to customize the behavior of sshconfig.
A typical networks.conf file might look like:

#
Basic Network Configuration
#
Defines known networks. Recognizes networks by the MAC addresses of their
routers. Can use this information to set default location, ports,
initialization script and proxy.

from sshconfig import NetworkEntry

Characteristics of the known networks
class Home(NetworkEntry):
 routers = ['a8:93:14:8a:e4:31'] # Router MAC addresses
 location = 'home'

class Work(NetworkEntry):
 routers = ['f0:90:76:9c:b1:37'] # Router MAC addresses
 location = 'home'

class WorkWireless(NetworkEntry):
 routers = ['8b:38:10:3c:1e:fe'] # Router MAC addresses
 location = 'home'

class Library(NetworkEntry):
 # Blocks port 22
 routers = [
 'e4:c7:22:f2:9a:46', # Wireless
 '00:15:c7:01:a7:00', # Wireless
 '00:13:c4:80:e2:89', # Ethernet
 '00:15:c7:01:a7:00', # Ethernet
]
 ports = [80, 443]
 location = 'home'
 init_script = 'unlock_library_network'

class DC_Peets(NetworkEntry):
 routers = ['e4:15:c4:01:1e:95'] # Wireless
 location = 'washington'
 init_script = 'unlock-peets'

Preferred networks, in order. If one of these networks are not available,
another will be chosen at random from the available networks.
PREFERRED_NETWORKS = ['Work']

All of these entries are optional. Network are searched in the order they are
given, which can be used to resolve ambiguities.

Subclassing NetworkEntry creates a network description that is described with
the attributes. A subclass will inherit all the attributes of its parent. The
following attributes are interpreted.

	key:
	Name used when specifying the network. If not present, the class name in
lower case is used.

	description:
	A description of the network. If not given, the class name is used with the
following modifications:
- underscores are replaced by spaces
- a space is added to separate a lower case to upper case transition
- double underscores are replaced by ‘ - ‘

	routers:
	A list of MAC addresses for the router that are used to identify the network.
To find these, connect to the network and run the /sbin/arp command.

	nmcli_connection:
	The name used by Network Manager to refer to this network. This is normally
not necessary, however it allows secondary networks to be recognized.
Imagine a laptop that has both an ethernet and a wifi connection on different
networks. Only one network will be used as a gateway by the laptop, and the
router for that network will be recognized through its MAC address. Say that
this is the ethernet network. By adding nmcli_connection to the wifi
network and setting it to the SSID of the access point (that is what nmcli
uses as the name of the network) you can now access both networks. Further
imagine that the ethernet network is named ‘work’ and the wifi network is
named ‘home’. Finally, imagine that a machine named ‘media’ is located on
the ‘home’ network. If the entry for ‘media’ is given as follows:

class Media(HostEntry):
 description = "Media server"
 hostname = {
 'home': '192.168.0.24',
 'default': 'terminus.home',
 }

If you only provided routers, then there would be no match and you would
get terminus.home as the hostname, meaning that you would reach the media
server via the internet. But if you set nmcli_connection, you will get
192.168.0.24 as the hostname, meaning that you will reach it directly through
your local wifi network. Thus, use of nmcli_connection allows you to use
the access point name in addition to the router MAC when determining which
hostname to use.

	location:
	The default setting for the location (value should be chosen from LOCATIONS)
when this network is active.

	ports:
	The default list of ports that should be available when this network is
active.

	init_script:
	A script that should be run before using this network. May be a string or
a list of strings. If it is a list of strings they are joined together to
form a command.

The unlock-peets script is included as an example of such a script. It is
used to automate the process of accepting the terms & conditions on the
click-through page. Unfortunately, while unlock-peets represents a reasonable
example, each organization requires the basic script to be customized to fit
their particular click-through pages.

To write a script it is helpful to understand how the unlocking process
works. The organizations that lock their wifi generally allow your computer
to directly connect to their access point, however their firewall is
configured to block any network traffic from unapproved devices. As you
connect, they grab the MAC address of your computer’s wifi. They then watch
for web requests emanating from your computer, which they then discard and
redirect your browser to their router which offers up a page that allows you
to accept their terms and conditions. This page is customized particularly
for you: it contains your MAC address. When you accept, your MAC address is
returned to the router along with your acceptance, and the router then
rewrites its firewall rules to allow your computer to access the internet.
After some period of time (an hour? a day?) the rules are discarded and you
lose your connection to the Internet. All of this tremendously abuses
Internet protocols, and causes its visitors headaches because this hack is
not compatible with HTTPS or VPN traffic. So for it to work, you must request
a plain HTTP site with any VPNs disabled, and plain HTTP sites are
disappearing. The headaches this cause seems to provide very little value to
anyone. They break the Internet so as to force you to accept their terms and
conditions, which they presumably feel protects them from lawsuits, but it is
hard to imagine anybody suing the owner of a public wifi for the actions of
an anonymous user. But I digress.

Debugging init scripts can be difficult because once you successfully unlock
the wifi, it generally remains unlocked for at least an hour, and maybe until
the next day, which limits your ability to test your script. However, in
Linux it is possible to change your MAC address. If you do so, the router no
longer recognizes you and you have to go through the unlock process again,
which allows you to thoroughly exercise and debug your script. To change
your MAC address, right-click on the Network Manager applet, and select ‘Edit
Connection …’, select the connection you are using, and click ‘Edit’, then
copy the ‘Device MAC address’ into ‘Cloned MAC address’ and change a few
digits. The digits are hexadecimal, so choose values between 0-9A-F. Then
click ‘Save’, ‘Close’, and restart your network connection.

	proxy:
	The name of the proxy to use by default when this network is active.

In addition to the NetworkEntry class definitions, this file may also define
PREFERRED_NETWORKS, ARP, NMCLI_CONNS.

	PREFERRED_NETWORKS:
	A list of strings that specify the preferred networks. It is useful if your
computer can access multiple networks simultaneously, such as when you are
using a laptop connected to a wired network but you did not turn off the
wireless networking. SSH is configured for the first network on the
PREFERRED_NETWORKS list that is available. If none of the preferred
networks are available, then an available known network is chosen at random.
If no known networks are available, SSH is configured for a generic network.
In the example, the Work network is listed in the preferred networks
because Work and WorkWireless would often be expected to be available
simultaneously, and Work is the wired network and is considerably faster
than WorkWireless.

	ARP:
	Command to use to query the network neighbor cache to determine the network
to which you are connected. This is settable in the off chance the command
is not located in the standard place. Normally, it should be set to
“/usr/sbin/arp -a”.

	NMCLI_CONNS:
	Command to use to query the network names from Network Manager. The default
is None, in which case nmcli is not run at all, with the result that any
nmcli_connection attributes on the network entries are ignored. You should
set it to “nmcli -t -f name connection show –active” on those hosts that
need it. You can use something like this

from sshconfig import gethostname

if gethostname() in ['laptop']:
 NMCLI_CONNS = "nmcli -t -f name connection show --active"

ssh.conf

This file allows you to control the entries in your SSH configuration file.
A typical ssh.conf file might look like:

Location of output file (must be an absolute path)
CONFIG_FILE = "~/.ssh/config"

Don't scramble known_hosts file on trusted hosts.
TRUSTED_HOSTS = ['lucifer']

Attribute overrides for all hosts
OVERRIDES = """
 Ciphers aes256-ctr,aes128-ctr,arcfour256,arcfour,aes256-cbc,aes128-cbc
"""

Attribute defaults for all hosts
DEFAULTS = """
 ForwardX11 no

 # This will keep a seemingly dead connection on life support for 10
 # minutes before giving up on it.
 TCPKeepAlive no
 ServerAliveInterval 60
 ServerAliveCountMax 10

 # Enable connection sharing
 ControlMaster auto
 ControlPath /tmp/ssh_mux_%h_%p_%r
"""

All of these entries are optional. The following attributes are interpreted.

	CONFIG_FILE:
	A string that specifies path to the SSH config file. If not given,
~/.ssh/config is used. The path to the SSH config file should be an
absolute path.

	TRUSTED_HOSTS:
	A list of strings that specifies the host names of trusted hosts. The
known_hosts file is not scrambled on known hosts. Generally you should
only trust hosts that you control. If you do not scramble your known_hosts
file they someone with root privileges could examine you known_hosts file
and determine which hosts you are using.

	OVERRIDES:
	A string that specifies the SSH settings that should be used on all hosts,
overriding conflicting settings specified in the host entry. They are
simply added to the top of the SSH config file. Do not place ForwardAgent
in OVERRIDES. It will be added on the individual hosts and only set to yes
if they are trusted.

	DEFAULTS:
	A string that specifies the SSH settings that should be used on all hosts,
without overriding conflicting settings specified in the host entry. They
are added to the bottom of the SSH config file.

It is a good idea to add your default algorithms to this entry. You might
want to consult stribika [https://stribika.github.io/2015/01/04/secure-secure-shell.html] when
determining which algorithms to use.

In addition, the following are useful when supporting machines with older
versions of SSH that might not have all the best algorithms.

	AVAILABLE_CIPHERS:
	A list of available ciphers. If a cipher is specified on a host entry that
is not in this list, it is ignored when creating the SSH configuration.

	AVAILABLE_MACS:
	A list of available MACs. If a MAC is specified on a host entry that is not
in this list, it is ignored when creating the SSH configuration.

	AVAILABLE_HOST_KEY_ALGORITHMS:
	A list of available host key algorithms. If a host key algorithm is
specified on a host entry that is not in this list, it is ignored when
creating the SSH configuration.

	AVAILABLE_KEX_ALGORITHMS:
	A list of available key exchange algorithms. If a key exchange algorithm is
specified on a host entry that is not in this list, it is ignored when
creating the SSH configuration.

proxies.conf

This file allows you to define any non-SSH proxies that you might want to use.
A typical proxies.conf file might look like:

Known proxies
PROXIES = dict(
 work_proxy = 'socat - PROXY:webproxy.ext.workinghard.com:%h:%p,proxyport=80',
 school_proxy = 'proxytunnel -q -p sproxy.fna.learning.edu:1080 -d %h:%p',
 tunnelr_proxy = 'ssh tunnelr -W %h:%p',
)

Once defined, these proxies can be activated from the command line.

All of these entries are optional. The following attributes are interpreted.

	PROXIES:
	A dictionary that defines each proxy. Each entry consists of a name and
string that would be used directly as the argument for a proxyCommand SSH
host attribute. These names can then be specified on the command line so
that all hosts use the proxy.

It is not necessary to add SSH hosts as proxies as with tunnelr_proxy above
as you can always specify any SSH host as a proxy, and if you do you will get
this proxyCommand by default. The only benefit that adding this entry to
PROXIES provides is that tunnelr_proxy is listed in the available proxies
by sshconfig settings.

Once the available proxies have been specified in PROXIES, you can activate it
using the --proxy (or -P) command line argument to specify the proxy by
name. For example:

PROXIES = {
 'work_proxy': 'corkscrew webproxy.ext.workinghard.com 80 %h %p',
 'school_proxy': 'corkscrew sproxy.fna.learning.edu 1080 %h %p',
}

Two HTTP proxies are described, the first capable of bypassing the corporate
firewall and the second does the same for the school’s firewall. Each is
a command that takes its input from stdin and produces its output on stdout.
The program corkscrew [https://github.com/bryanpkc/corkscrew] is designed to
proxy a TCP connection through an HTTP proxy. The first two arguments are the
host name and port number of the proxy. corkscrew connects to the proxy and
passes the third and fourth arguments, the host name and port number of desired
destination.

There are many alternatives to corkscrew. One is socat:

PROXIES = {
 'work_proxy': 'socat - PROXY:webproxy.ext.workinghard.com:%h:%p,proxyport=80',
 'school_proxy': 'socat - PROXY:sproxy.fna.learning.edu:%h:%p,proxyport=1080',
}

Another alternative is proxytunnel [https://proxytunnel.sourceforge.io]:

PROXIES = {
 'work_proxy': 'proxytunnel -q -p webproxy.ext.workinghard.com:80 -d %h:%p',
 'school_proxy': 'proxytunnel -q -p sproxy.fna.learning.edu:1080 -d %h:%p',
}

For more information on configuring proxies see proxies.

When at work, you should generate your SSH config file using:

sshconfig --proxy=work_proxy

or:

sshconfig --Pwork_proxy

You can get a list of the pre-configured proxies using:

sshconfig --available

It is also possible to use SSH hosts as proxies. For example, when at an
internet cafe that blocks port 22, you can work around the blockage even if your
host only supports 22 using:

sshconfig --ports=80 --proxy=tunnelr

or:

sshconfig -p80 --Ptunnelr

Using the –proxy command line argument adds a proxyCommand entry to every
host that does not already have one (except the host being used as the proxy).
In that way, proxies are automatically chained.

Rather than always specifying the proxy by command line, you can specify a proxy
on the NetworkEntry for you network. If you do, that proxy will be used by
default when on that network for all hosts that are not on that network. A host
is said to be on the network if the hostname is specifically given for that
network. For example, assume you have a network configured for work:

class Work(NetworkEntry):
 # Work network
 routers = ['78:92:4d:2b:30:c6']
 proxy = 'work_proxy'

Then assume you have a host that is not configured for that network (Home) and
one that is (Farm):

class Home(HostEntry):
 description = "Home Server"
 aliases = ['lucifer']
 user = 'herbie'
 hostname = {
 'home': '192.168.0.1',
 'default': '74.125.232.64'
 }

class Farm(HostEntry):
 description = "Entry Host to Machine farm"
 aliases = ['mercury']
 user = 'herbie'
 hostname = {
 'work': '192.168.1.16',
 'default': '231.91.164.92'
 }

When on the work network, when you connect to home you will use the proxy and
when you connect to farm, you will not.

locations.conf

This file allows you to define any locations that you might frequent. A typical
locations.conf file might look like:

My locations
LOCATIONS = dict(
 home = 'San Francisco',
 washington = 'Washington DC',
 toulouse = 'Toulouse',
)

The LOCATIONS entry is optional. It is a dictionary of place names and
descriptions. It is needed only if expect to change the server you access based
on your location.

hosts.conf

A typical hosts.conf file generally contains many host specifications.

You subclass HostEntry to specify a host and then add attributes to configure
its behavior. Information you specify is largely just placed in the SSH config
file unmodified except:

	The class name is converted to lower case to make it easier to type.

	‘forwardAgent’ is added and set based on whether the host is trusted.

	Any attribute that starts with underscore (_) is ignored and so can be used
to hold intermediate values.

In most cases, whatever attributes you add to your class get converted into
fields in the SSH host description. However, there are several attributes that
are intercepted and used by sshconfig. They are:

	description:
	A string that is added as a comment above the SSH host description.

	aliases:
	A list of strings, each of which is added to the list of names that can be
used to refer to this host.

	trusted:
	Indicates that the host should be trusted (it is fully under your
control, no untrusted parties have root access). This enables agent
forwarding for the host. If you are using agent forwarding, then it is
possible for someone with root permissions to access and use your agent. So
you should only mark a host as trusted if you trust the individuals that have
administrative access on that machine.

	guests:
	A list of machines that are accessed using this host as a proxy.

Here is a example:

class DigitalOcean(HostEntry):
 description = "Web server"
 aliases = ['do', 'web']
 user = 'herbie'
 hostname = '107.170.65.89'
 identityFile = 'digitalocean'

This results in the following entry in the SSH config file:

Web server
host digitalocean do web
 user herbie
 hostname 107.170.65.89
 identityFile /home/herbie/.ssh/digitalocean
 forwardAgent no

When specifying the identityFile, you can either use an absolute or relative
path. The relative path will be relative to the directory that contains the SSH
config file. Specifying identityFile results in identitiesOnly and
pubkeyAuthentication being added. identityFile may be a string, or a list
of strings. Only those files that actually exist will be used.

SSHconfig provides two utility functions that you can use in your hosts file
to customize it based on either the hostname or username that are being used
when sshconfig is run. They are gethostname() and getusername() and both
can be imported from sshconfig. For example, I generally use a different
identity (SSH key) from each machine I operate from. To implement this, at the
top of my hosts file I have:

from sshconfig import gethostname

class DigitalOcean(HostEntry):
 description = "Web server"
 aliases = ['do', 'web']
 user = 'herbie'
 hostname = '107.170.65.89'
 identityFile = gethostname()

Ports

The default SSH port is 22. However, many ISPs block port 22. For examples, your
employer may block port 22 to discourage the use of SSH, which makes them
nervous. Coffee shops also have a habit of blocking port 22. To work around
these blocks, it is useful to configure SSH to respond to other ports. However,
if port 22 is blocked, there is a good chance other ports are blocked as well.
For example, one company I was associated with blocked all but ports 80, 443,
and 554 (http, https, and real-time streaming protocol) (554 was used by the
RealPlayer, which was once heavily used but no longer, so port 554 traffic is no
longer allowed through). A coffee shop I visited blocked everything but ports
80 and 443. Finally, while it is rare to find port 80 blocked, it is common for
the ISP to pass all port 80 traffic through a transparent http proxy. This would
prevent port 80 from being used by SSH. So, if at a very minimum, if you are
going to configure a server to support multiple SSH ports, you should try to
include port 443 in your list. If you would like to support more, I recommend
22 (SSH), 53 (DNS), 80 (HTTP), 443 (HTTPS). In my experience, these are the
least likely to be blocked.

If a host is capable of accepting connections on more than one port, you should
use the choose() method of the ports object to select the appropriate port.

For example:

from sshconfig import HostEntry, ports

class Tunnelr(HostEntry):
 description = "Proxy server"
 user = 'kundert'
 hostname = 'fremont.tunnelr.com'
 port = ports.choose([22, 80, 443])
 identityFile = 'tunnelr'

An entry such as this would be used when sshd on the host has been configured to
accept SSH traffic on a number of ports, in this case, ports 22, 80 and 443.

The actual port used is generally the first port given in the list provided to
choose(). However this behavior can be overridden with the –ports (or -p)
command line option. For example:

sshconfig --ports=443,80

or:

sshconfig -p443,80

This causes ports.choose() to return the first port given in the –ports
specification if it is given anywhere in the list of available ports given as an
argument to choose(). If the first port does not work, it will try to return the
next one given, and so on. So in this example, port 443 would be returned. If
-p80,443 were specified, then port 80 would be used.

You can specify as many ports as you like in a –ports specification, just
separate them with a comma and do not add spaces.

In this next example, we customize the proxy command based on the port chosen:

class Home(HostEntry):
 description = "Home server"
 user = 'herbie'
 hostname = {
 'home': '192.168.1.32',
 'default': '231.91.164.05'
 }
 port = ports.choose([22, 80])
 if port in [80]:
 proxyCommand = 'socat - PROXY:%h:127.0.0.1:22,proxyport=%p'
 identityFile = 'my2014key'
 dynamicForward = 9999

An entry such as this would be used if sshd is configured to directly accept
traffic on port 22, and Apache on the same server is configured to act as
a proxy for ssh on port 80 (see SSH via HTTP [http://www.nurdletech.com/linux-notes/ssh/via-http.html]).

If you prefer, you can use proxytunnel rather than socat in the proxy command:

proxyCommand = 'proxytunnel -q -p %h:%p -d 127.0.0.1:22'

You can also use this command for port 443, but you may need to add the -E
option if encryption is enabled on port 443.

An alternate scenario is that you need to use a port that the host does not
support. In this case you would use another server as an intermediate jump
host. For example:

class Backups(HostEntry):
 description = "Backups server"
 user = 'dumper'
 hostname = '143.18.194.32'
 port = ports.choose([22, 80, 443])
 if port in [80, 443]:
 proxyJump = 'tunnelr'
 port = 22
 identityFile = 'my2014key'

In this example Backups indicates that it supports ports 22, 80 and 443 even
though the server itself only supports port 22. However, if port 80 or port 443
is selected, then tunnelr is configured as a jump server. The port must be
reset to port 22 so that the jump server connects to port 22 on the Backups
server.

Attribute Descriptions

Most attributes can be given as a two element tuple. The first value in the pair
is used as the value of the attribute, and the second should be a string that is
added as a comment to describe the attribute. For example:

hostname = '65.19.130.60', 'fremont.tunnelr.com'

is converted to:

hostname 65.19.130.60
 # fremont.tunnelr.com

Hostname

The hostname may be a simple string, or it may be a dictionary. If given as
a dictionary, each entry will have a string key and string value. The key would
be the name of the network (in lower case) and the value would be the hostname
or IP address to use when on that network. One of the keys may be ‘default’,
which is used if the network does not match one of the given networks. For
example:

class Home(HostEntry):
 hostname = {
 'home': '192.168.0.1',
 'default': '74.125.232.64'
 }

When on the home network, this results in an ssh host description of:

host home
 hostname 192.168.0.1
 forwardAgent no

When not on the home network, it results in an ssh host description of:

host home
 hostname 74.125.232.64
 forwardAgent no

The ssh config file entry for this host will not be generated if not on one of
the specified networks and if default is not specified.

It is sometimes appropriate to set the hostname based on which host you are on
rather than on which network. For example, if a sshconfig host configuration
file is shared between multiple machines, then it is appropriate to give the
following for a host which may become localhost:

class Home(HostEntry):
 if gethostname() == 'home':
 hostname = '127.0.0.1'
 else:
 hostname = '192.168.1.4'

Location

It is also possible to choose the hostname based on location. The user specifies
location using:

sshconfig --location=washington

or:

sshconfig -lwashington

You can get a list of the known locations using:

sshconfig settings

To configure support for locations, you first specify your list of known
locations in LOCATIONS (in locations.conf):

LOCATIONS = {
 'home': 'San Francisco',
 'washington': 'Washington DC',
 'toulouse': 'Toulouse',
}

Then you must configure your hosts to use the location. To do so, you use the
choose() method to set the location. The choose() method requires three things:

	A dictionary that gives hostnames or IP addresses and perhaps descriptive
comment as a function of the location. These locations are generally specific
to the host.

	Another dictionary that maps the user’s locations into the host’s locations.

	A default location.

For example:

from sshconfig import HostEntry, locations, ports

class Tunnelr(HostEntry):
 description = "Commercial proxy server"
 user = 'kundert'
 hostname = locations.choose(
 locations = {
 'sf': ("65.19.130.60", "Fremont, CA, US (fremont.tunnelr.com)"),
 'la': ("173.234.163.226", "Los Angeles, CA, US (la.tunnelr.com)"),
 'wa': ("209.160.33.99", "Seattle, WA, US (seattle.tunnelr.com)"),
 'tx': ("64.120.56.66", "Dallas, TX, US (dallas.tunnelr.com)"),
 'va': ("209.160.73.168", "McLean, VA, US (mclean.tunnelr.com)"),
 'nj': ("66.228.47.107", "Newark, NJ, US (newark.tunnelr.com)"),
 'ny': ("174.34.169.98", "New York City, NY, US (nyc.tunnelr.com)"),
 'london': ("109.74.200.165", "London, UK (london.tunnelr.com)"),
 'uk': ("31.193.133.168", "Maidenhead, UK (maidenhead.tunnelr.com)"),
 'switzerland': ("178.209.52.219", "Zurich, Switzerland (zurich.tunnelr.com)"),
 'sweden': ("46.246.93.78", "Stockholm, Sweden (stockholm.tunnelr.com)"),
 'spain': ("37.235.53.245", "Madrid, Spain (madrid.tunnelr.com)"),
 'netherlands': ("89.188.9.54", "Groningen, Netherlands (groningen.tunnelr.com)"),
 'germany': ("176.9.242.124", "Falkenstein, Germany (falkenstein.tunnelr.com)"),
 'france': ("158.255.215.77", "Paris, France (paris.tunnelr.com)"),
 },
 maps={
 'home': 'sf',
 'washington': 'va',
 'toulouse': 'france',
 },
 default='sf'
)
 port = ports.choose([
 22, 21, 23, 25, 53, 80, 443, 524, 5555, 8888
])
 identityFile = 'tunnelr'

Now if the user specifies –location=washington on the command line, then it is
mapped to the host location of va, which becomes mclean.tunnelr.com
(209.160.73.168). Normally, users are expected to choose a location from the
list given in LOCATIONS. As such, every maps argument should support each of
those locations. However, a user may given any location they wish. If the
location given is not found in maps, then it will be looked for in locations,
and if it is not in locations, the default location is used.

Forwards

When forwards are specified, two SSH host entries are created. The first does
not include forwarding. The second has the same name with ‘-tun’ appended, and
includes the forwarding. The reason this is done is that once one connection is
setup with forwarding, a second connection that also attempts forwarding will
produce a series of error messages indicating that the ports are in use and so
cannot be forwarded. Instead, you should only use the tunneling version once
when you want to set up the port forwards, and you the base entry at all other
times. Often forwarding connections are setup to run in the background as
follows:

ssh -f -N home-tun

If you have set up connection sharing using ControlMaster and then run:

ssh home

SSH will automatically share the existing connection rather than starting a new
one.

Both local and remote forwards should be specified as lists. The lists can
either be simple strings, or can be tuple pairs if you would like to give
a description for the forward. The string that describes the forward has the
syntax: ‘lclHost:lclPort rmtHost:rmtPort’ where lclHost and rmtHost can be
either a host name or an IP address and lclPort and rmtPort are port numbers.
For example:

'11025 localhost:25'

The local host is used to specify what machines can connect to the port locally.
If the GatewayPorts setting is set to yes on the SSH server, then forwarded
ports are accessible to any machine on the network. If the GatewayPorts
setting is no, then the forwarded ports are only available from the local
host. However, if GatewayPorts is set to clientspecified, then the
accessibility of the forward address is set by the local host specified. For
example:

	5280 localhost:5280

	accessible only from localhost

	localhost:5280 localhost:5280

	accessible only from localhost

	*:5280 localhost:5280

	accessible from anywhere

	0.0.0.0:5280 localhost:5280

	accessible from anywhere

	lucifer:5280 localhost:5280

	accessible from lucifer

	192.168.0.1:5280 localhost:5280

	accessible from 192.168.0.1

The VNC function is provided for converting VNC host and display number
information into a setting suitable for a forward. You can give the local
display number, the remote display number, and the remote host name (from the
perspective of the remote ssh server) and the local host name. For example:

VNC(lclDispNum=1, rmtHost='localhost', rmtDispNum=12)

This allows a local VNC client viewing display 1 to show the VNC server running
on display 12 of the SSH server host.

If you give a single number, it will use it for both display numbers. If you
don’t give a name, it will use localhost as the remote host (in this case
localhost represents the remote ssh server). So the above VNC section to the
local forwards could be shortened to:

VNC(12)

if you configured the local VNC client to connect to display 12.

An example of many of these features:

from sshconfig import HostEntry, ports, locations, VNC

class Home(HostEntry):
 description = "Lucifer Home Server"
 aliases = ['lucifer']
 user = 'herbie'
 hostname = {
 'home': '192.168.0.1',
 'default': '74.125.232.64'
 }
 port = ports.choose([22, 80])
 if port in [80]:
 proxyCommand = 'socat - PROXY:%h:127.0.0.1:22,proxyport=%p'
 trusted = True
 identityFile = gethostname()
 localForward = [
 ('30025 localhost:25', "Mail - SMTP"),
 ('30143 localhost:143', "Mail - IMAP"),
 ('34190 localhost:4190', "Mail - Sieve"),
 ('39100 localhost:9100', "Printer"),
 (VNC(lclDispNum=1, rmtDispNum=12), "VNC"),
]
 dynamicForward = 9999

On a foreign network it produces:

Lucifer Home Server
host home lucifer
 user herbie
 hostname 74.125.232.64
 port = 22
 identityFile /home/herbie/.ssh/teneya
 forwardAgent yes

Lucifer Home Server (with forwards)
host home-tun lucifer-tun
 user herbie
 hostname 74.125.232.64
 port = 22
 identityFile /home/herbie/.ssh/teneya
 forwardAgent yes
 localForward 11025 localhost:25
 # Mail - SMTP
 localForward 11143 localhost:143
 # Mail - IMAP
 localForward 14190 localhost:4190
 # Mail - Sieve
 localForward 19100 localhost:9100
 # Printer
 localForward 5901 localhost:5912
 # VNC
 dynamicForward 9999
 exitOnForwardFailure yes

Guests

The ‘guests’ attribute is a list of hostnames that would be accessed by using
the host being described as a proxy. The attributes specified are shared with
its guests (other than hostname, port, and port forwards). The name used for
the guest in the ssh config file would be the hostname combined with the guest
name using a hyphen.

For example:

class Farm(HostEntry):
 description = "Entry Host to Machine farm"
 aliases = ['earth']
 user = 'herbie'
 hostname = {
 'work': '192.168.1.16',
 'default': '231.91.164.92'
 }
 trusted = True
 identityFile = 'my2014key'
 guests = [
 ('jupiter', "128GB Compute server"),
 ('saturn', "96GB Compute server"),
 ('neptune', "64GB Compute server"),
]
 localForward = [
 (VNC(dispNum=21, rmtHost=jupiter), "VNC on Jupiter"),
 (VNC(dispNum=22, rmtHost=saturn), "VNC on Saturn"),
 (VNC(dispNum=23, rmtHost=neptune), "VNC on Neptune"),
]

On a foreign network produces:

Entry Host to Machine Farm
host farm earth
 user herbie
 hostname 231.91.164.92
 identityFile /home/herbie/.ssh/my2014key
 forwardAgent yes

Entry Host to Machine Farm (with port forwards)
host farm-tun earth-tun
 user herbie
 hostname 231.91.164.92
 identityFile /home/herbie/.ssh/my2014key
 forwardAgent yes
 localForward 5921 jupiter:5921
 # VNC on jupiter
 localForward 5922 saturn:5922
 # VNC on Saturn
 localForward 5923 neptune:5923
 # VNC on Neptune

128GB Compute Server
host farm-jupiter
 hostname jupiter
 proxyCommand ssh host -W %h:%p
 user herbie
 identityFile /home/herbie/.ssh/my2014key
 forwardAgent yes

96GB Compute Server
host farm-saturn
 hostname saturn
 proxyCommand ssh host -W %h:%p
 user herbie
 identityFile /home/herbie/.ssh/my2014key
 forwardAgent yes

64GB Compute Server
host farm-netpune
 hostname neptune
 proxyCommand ssh host -W %h:%p
 user herbie
 identityFile /home/herbie/.ssh/my2014key
 forwardAgent yes

Subclassing

Subclassing is an alternative to guests that gives more control over how the
attributes are set. When you create a host that is a subclass of another host
(the parent), the parent is configured to be the proxy and only the ‘user’ and
‘identityFile’ attributes are copied over from the parent, but these can be
overridden locally.

For example:

class Jupiter(Farm):
 description = "128GB Compute Server"
 hostname = 'jupiter'
 remoteForward = [
 ('14443 localhost:22', "Reverse SSH tunnel used by sshfs"),
]

Notice, that Jupiter subclasses Farm, which was described in an example above.
This generates:

128GB Compute Server
host jupiter
 user herbie
 hostname jupiter
 identityFile /home/herbie/.ssh/my2014key
 forwardAgent no
 proxyCommand ssh farm -W %h:%p

128GB Compute Server (with port forwards)
host jupiter-tun
 user herbie
 hostname jupiter
 identityFile /home/herbie/.ssh/my2014key
 forwardAgent no
 proxyCommand ssh farm -W %h:%p
 remoteForward 14443 localhost:22

If you contrast this with farm-jupiter above, you will see that the name is
different, as is the trusted status (farm-jupiter inherits ‘trusted’ from Host,
whereas jupiter does not). Also, there are two versions, one with port
forwarding and one without.

Examples

Multiple Clients, Multiple Servers, One Set of Config Files

Imagine having several machines that you log in to directly, call them cyan,
magenta, and yellow, and imagine that each has its own SSH key, cyan_rsa,
magenta_rsa, and yellow_rsa. Further imagine that you also have several servers
that you want to access, mantis, honeybee, and butterfly. Finally, assume that
you would like to have one set of sshconfig files that are shared between all
of them.

Call cyan, magenta, and yellow the clients, and call mantis, honeybee, and
butterfly the servers. Finally, the clients do not have fixed IP addresses and
so will not have entries, meaning that from any client you can get to any
server, but you cannot access another client.

Then, a hosts.conf file for this situation might appear like the following:

from sshconfig import HostEntry

identities = ['cyan_rsa.pub', 'magenta_rsa.pub', 'yellow_rsa.pub']

class Mantis(HostEntry):
 hostname = 'mantis'
 identityFile = identities
 trusted = True

class HoneyBee(HostEntry):
 hostname = 'honeybee'
 identityFile = identities
 trusted = True

class ButterFly(HostEntry):
 hostname = 'butterfly'
 identityFile = identities
 trusted = True

From this sshconfig creates the following host entries for ~/.ssh/config:

host butterfly
 hostname butterfly
 identityFile cyan_rsa.pub
 identityFile magenta_rsa.pub
 identityFile yellow_rsa.pub
 identitiesOnly yes
 pubkeyAuthentication yes
 forwardAgent yes

host honeybee
 hostname honeybee
 identityFile cyan_rsa.pub
 identityFile magenta_rsa.pub
 identityFile yellow_rsa.pub
 identitiesOnly yes
 pubkeyAuthentication yes
 forwardAgent yes

host mantis
 hostname mantis
 identityFile cyan_rsa.pub
 identityFile magenta_rsa.pub
 identityFile yellow_rsa.pub
 identitiesOnly yes
 pubkeyAuthentication yes
 forwardAgent yes

The private keys are only present on the respective clients. In this way if one
of the clients is lost or compromised, you can simply remove the corresponding
public keys from the authorized hosts files on the servers to re-secure your
hosts.

Each host is trusted and the key is loaded into the SSH agent on the client.
Access to the key as you move from host to host is provided by agent forwarding.
Use of the identityFile allows you to limit the keys to be considered for each
host but requires that the specified files exist on each host. Specifying the
public keys means that you can keep your private key on the client; you do not
need to copy it to all the hosts that you use.

One Set of Config Files for a Heterogeneous Environment

The previous example was simplified because there is a constant address for all
the servers. Now consider a collection of machines where how you access
a machine differs on where you are in the network. Here is a diagram of the
network. Host entries are created for each of the machines that are drawn with
a solid outline. Those machines that are connected to the internet have public
IP addresses, those that are not connected to the internet have private
addresses on a network provided by the enclosing box. Thus, work has a network
that contains bastion, dump and my_laptop. bastion contains www and
mail, and connects to both work and the internet. my laptop shows up in
three places and switches between them as I move around. Generally the IP
address of my laptop is assigned dynamically (if you want to access
my_laptop from your servers, see Accessing the Client and SSH via Tor
below).

[image: _images/network-map.svg]The following hosts.conf file can be used to access these hosts, using optimal
path in each case:

from sshconfig import HostEntry, gethostname

local_host_name = gethostname()

class Bastion(HostEntry):
 description = 'Work bastion server',
 if local_host_name == 'bastion':
 hostname = '127.0.0.1'
 else:
 hostname = dict(
 bastion = '192.168.122.1',
 work = '10.25.13.4',
 default = '181.78.165.55'
)
 trusted = True

class WWW(HostEntry):
 description = 'Web server',
 hostname = '192.168.122.172'
 if local_host_name == 'www':
 hostname = '127.0.0.1'
 elif get_network_name() != 'bastion':
 ProxyJump = 'bastion'
 trusted = True

class Mail(HostEntry):
 description = 'Mail server',
 hostname = '192.168.122.173'
 if local_host_name == 'mail':
 hostname = '127.0.0.1'
 elif get_network_name() != 'bastion':
 ProxyJump = 'bastion'
 trusted = True

class Dump(HostEntry):
 description = 'Backups server',
 hostname = '10.25.13.27',
 if local_host_name == 'dump':
 hostname = '127.0.0.1'
 elif get_network_name() != 'work':
 ProxyJump = 'bastion'
 trusted = True

class Media(HostEntry):
 description = 'Home media server',
 if local_host_name == 'media':
 hostname = '127.0.0.1'
 else:
 hostname = dict(
 home = '192.168.0.2',
 default = '101.218.138.141'
)
 trusted = True

class GitHub(HostEntry):
 description = 'GitHub',
 hostname = 'github.com'
 trusted = False

class VirtualPrivateServer(HostEntry):
 description = 'my virtual private server',
 alias = 'vps'
 hostname = '129.173.134.181'
 trusted = True

class Backups(HostEntry):
 description = 'home backups',
 hostname = '109.142.233.168'
 trusted = False

First a few words about bastion. If sshconfig is run with this file on
bastion, then local_host_name will be bastion and the IP address for
bastion will be set to 127.0.0.1, which is the address a machine assigns to
itself. Otherwise, if sshconfig is run on one of bastion’s virtual machines,
then hostname becomes 192.168.122.1, the address of bastion on its internal
virtual network. If it run on a machine on the work network outside of
bastion, it gets the address of bastion on work network: 10.25.13.4.
Finally, for all other machines, the public address is used: 181.78.165.55.
Thus, in all cases the optimal IP address is used.

Now some words about www and mail, the bastion virtual machines. Consider
www. If sshconfig is run on www, then the hostname is set to 127.0.0.1.
If it is run on a machine on the bastion virtual network, such as mail, then
hostname is set to its address on that network, 192.168.122.172. On any other
machine bastion is used as a jump host. Normally www would be described
using a subclass of Bastion, which routes all connections to www through
bastion. However, that is not as efficient when on machines that are on the
bastion virtual network. Thus this approach is a bit more verbose but
represent an optimal solution from a performance perspective.

Specifying trusted as True on a host results in agent forwarding to be enabled
for that host. If you start on the laptop and visit a trusted host, then your
SSH agent goes with you, and you can move from a trusted host to any other host
without typing a passphrase as long as that host accepts a key held in the
laptop’s agent. Never declare a host as trusted if you do not trust root on
that host.

Accessing the Client

Assume that you have logged into your laptop, the client, and used it to access
a server. On the server you may need an SSH host entry that gets you back to
the client. For example, you may have Git or Mercurial repositories on you
laptop that you need to pull from. To address this you need two things. First,
you need to set up a reverse tunnel that allows you to access the SSH server on
your laptop from the server, and two you need a SSH host entry on the server
that uses that tunnel to reach your laptop. The first is provided by the
remoteForward on this example of the sshconfig host entry for the server:

class Dev(HostEntry):
 description = "Development server"
 hostname = '192.168.122.17'
 remoteForward = [
 ('2222 localhost:22', "Reverse SSH tunnel used by Mercurial"),
]

The second is provided by adding a sshconfig host entry for the client machine
as seen from the server:

class Client(HostEntry):
 description = "used for reverse tunnels back to the client host"
 hostname = 'localhost'
 port = 2222
 StrictHostKeyChecking = False

Now your Git and Mercurial repositories use client as the name for the
repository host. The StrictHostKeyChecking is only needed if their might be
multiple clients

Access Restrictions

In some situations you may be sitting behind firewalls that prevent direct
access to your SSH server. Generally, firewalls allow use of common ports, such
as 80 (http), 443 (https), and perhaps 53 (dns). In this case, you simply
configure your SSH server to listen on these ports. This situation is
illustrated here:

[image: _images/proxy1.svg]In this case you simply list the available ports on your host entry and specify
the desired port when you run SSHconfig:

class SSH_Server(HostEntry):
 hostname = 'NNN.NNN.NNN.NNN'
 port = ports.choose([22, 53, 80, 443])

However, it may be that those ports are already in use. For example, you may
have a webserver that is using ports 80 and 443. In this case it is possible to
insert a proxy that allows these ports to be used for web both and SSH traffic.

[image: _images/proxy2.svg]If you use Apache for your webserver, it naturally provides the CONNECT
feature that allows it to act as its own proxy. See SSH via HTTP [https://nurdletech.com/linux-notes/ssh/via-http.html] for instructions.
It is also possible to use sslh [https://www.ostechnix.com/sslh-share-port-https-ssh] or HAproxy [https://blog.chmd.fr/ssh-over-ssl-episode-4-a-haproxy-based-configuration.html].

In this case you would specify the proxy using proxyCommand. You can either
add it directly to your host configuration or you can create a named proxy and
specify it when you run SSHconfig. For example, specifying the proxy on your
host entry can be done as follows:

class SSH_Server(HostEntry):
 hostname = 'NNN.NNN.NNN.NNN'
 port = ports.choose([22, 53, 80, 443])
 if port in [80, 443]:
 proxyCommand = 'corkscrew %h %p localhost 22'

SSH replaces %h with the hostname and %p with the port number. In this case
%h becomes NNN.NNN.NNN.NNN and %p becomes the chosen port (either 80 or 443).

In this situation, there are a wide variety of programs that can be used to
interface with the proxy server. For example:

proxyCommand = 'proxytunnel -q -p %h:%p -d localhost:22'
proxyCommand = 'socat - PROXY:%h:localhost:22,proxyport=%p'
proxyCommand = 'corkscrew %h %p localhost 22'
proxyCommand = 'ncat --proxy %h:%p --proxy-type http localhost 22'

Those commands all assume you are using an HTTP proxy. If you are using a SOCKS
proxy, you can use:

proxyCommand = 'ncat --proxy MMM.MMM.MMM.MMM:PPPP --proxy-type socks5 %h %p'

where MMM.MMM.MMM.MMM is the host name or IP address of you proxy, and PPPP
is the proxy’s port number (in this case I am not assuming that your SSH sever
is on the same host as the proxy server.

If you are using a HTTPS proxy that expects the incoming traffic to be wrapped
in an SSL/TLS tunnel, you can use ProxyTunnel [https://github.com/proxytunnel/proxytunnel]:

class SSH_Server(HostEntry):
 hostname = 'NNN.NNN.NNN.NNN'
 port = ports.choose([22, 53, 80, 443])
 if port == 80:
 proxyCommand = 'proxytunnel -q -p %h:%p -d localhost:22'
 elif port == 443:
 proxyCommand = 'proxytunnel -q -E -p %h:%p -d localhost:22'

Another common situation is that your are behind an oppressive corporate
firewall that blocks all traffic except that which passes through a specific
pass-through proxy server. In this case they often perform deep packet
inspection on the traffic passing through the proxy in order to discover and
block traffic they find undesirable. SSH traffic is often one of their targets.
In this case you can often get through by embedding your SSH traffic in an
SSL/TLS tunnel. Doing so encrypts the traffic and makes it look like normal web
traffic, making it impossible to filter out without also risking filtering out
normal web traffic. In this case, a remote proxy is required at the destination
to extract the SSH traffic from the SSL/TLS tunnel:

[image: _images/proxy3.svg]There are variety of ways of embedding your SSH traffic in an SSL/TLS tunnel.
For example, stunnel [https://www.stunnel.org] and HTTP tunnel [http://www.nocrew.org/software/httptunnel.html]. One simple way, if your
server already has Apache running, is to use SSH via HTTP [https://nurdletech.com/linux-notes/ssh/via-http.html] on port 443 with
SSL/TLS enabled. Having an active website at the same address and port you are
using for SSH is particularly desirable as it makes it seem like you are just
accessing the website normally. ProxyTunnel [https://github.com/proxytunnel/proxytunnel] is used as the interface to the
proxy servers, as it can form the SSL/TLS tunnel:

from sshconfig import get_network_name

class SSH_Server(HostEntry):
 hostname = 'NNN.NNN.NNN.NNN'
 if get_network_name() == 'work':
 proxyCommand = 'proxytunnel -E -q -p MMM.MMM.MMM.MMM:LPP -r %h:RPP -d localhost:%p'

In this example, the pass-through proxy is only used if you are on the work
network and the remote proxy port, RPP, is generally chosen to be 443 to
complete the ruse.

In some cases, it may be that the corporate proxy is decrypting, in which case
it would be possible for it to use deep packet inspection to determine that you
are using SSH and block the connection. At this point, I believe you are out of
luck.

Once you have established one SSH connection through the firewall, you can
exploit it to get other connections through. For example:

class RemoteProxy:
 hostname = 'MMM.MMM.MMM.MMM'
 port = PPP

class SSH_Server:
 hostname = 'NNN.NNN.NNN.NNN'
 proxyJump = 'remoteproxy'

In this case, remoteproxy is the established SSH connection that pierces the
firewall, and ssh_server uses proxyJump to piggy-back on that connection as
its way to pierce the firewall.

Older versions of SSH do not support proxyJump, so the SSH_Server host can
be described using:

class SSH_Server:
 hostname = 'NNN.NNN.NNN.NNN'
 proxyCommand = 'ssh remoteproxy -W %h:%p'

In this case, SSH replaces %h with the specified hostname, NNN.NNN.NNN.NNN,
and %p with the specified port (22 is used if no port is given).

SSH via Tor

A convenient way to access machines that have no fixed IP address is to
configure SSH as a Tor hidden service on that machine as described here [https://nurdletech.com/linux-notes/ssh/hidden-service.html]. This is helpful
because, as long as Tor is running on both machines and can reach the internet,
it should be possible to establish a connection regardless of how deeply either
is buried in private networks. Here is a host entry for accessing such
a machine:

class HiddenLaptop(HostEntry):
 description = "Laptop as Tor hidden service"
 aliases = 'hl'.split()
 hostname = '8owgthc4izjjke9sb4qi5dquhbnug4elcnlbv6pkszybvghylryrodad.onion'
 proxyCommand = 'ncat --proxy localhost:9050 --proxy-type socks5 %h %p'

This assumes that you have Tor running on your client machine and it is
providing a SOCKS proxy on port 9050, and that SSH is configured as a hidden
service and Tor is running on the machine you are trying to access.

Supporting Hosts with Old Versions of SSH

When a host has an older version of SSH and you are using the SSH algorithm
settings to harden your connections, then you may run into the situation where
one or more of your choices is not supported by the dated version of SSH.

There are two situations that must be addressed. First, when run from a machine
with a newer version of of SSH and connecting to a machine with an older version
fo SSH, an algorithm must not be required that the older version does not
support. In this case one simply specifies the algorithms suitable for
a particular host in the host entry for that host. For example:

class Github(HostEntry):
 aliases = ['github.com', '*.github.com']
 # github.com is needed because repositories refer to github.com, not github
 hostname = 'github.com'
 hostKeyAlias = 'github-server-pool.github.com'
 user = 'git'
 # when pushing to my repositories I must use the git user
 identityFile = 'github.pub'
 trusted = False
 kexAlgorithms = ','.join([
 'curve25519-sha256@libssh.org',
 'diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group-exchange-sha1',
 'diffie-hellman-group14-sha1'
])

Second, when running on the machine with the older version of SSH, modern
algorithms that are not supported by the older version must not be included in
the generated SSH config file. The following ssh.conf file shows how to
accomplish this:

from sshconfig import gethostname
from textwrap import dedent

Desired Algorithms
ciphers = ','.join('''
 chacha20-poly1305@openssh.com aes256-gcm@openssh.com
 aes128-gcm@openssh.com aes256-ctr aes192-ctr aes128-ctr
'''.split())
macs = ','.join('''
 mac-sha2-512-etm@openssh.com hmac-sha2-256-etm@openssh.com
 umac-128-etm@openssh.com hmac-sha2-512 hmac-sha2-256 umac-128@openssh.com
'''.split())
host_key_algorithms = ','.join('''
 ssh-ed25519-cert-v01@openssh.com ssh-rsa-cert-v01@openssh.com
 ssh-ed25519,ssh-rsa
'''.split())
kex_algorithms = ','.join('''
 curve25519-sha256@libssh.org diffie-hellman-group-exchange-sha256
'''.split())

Filter Algorithms
if local_host_name in ['www', 'mail']:
 AVAILABLE_CIPHERS = '''
 3des-cbc aes128-cbc aes192-cbc aes256-cbc aes128-ctr aes192-ctr
 aes256-ctr arcfour128 arcfour256 arcfour blowfish-cbc cast128-cbc
 '''.split()
 AVAILABLE_MACS = '''
 hmac-sha1 umac-64@openssh.com hmac-ripemd160 hmac-sha1-96
 hmac-sha2-256 hmac-sha2-512
 '''.split()
 AVAILABLE_HOST_KEY_ALGORITHMS = '''
 ssh-rsa-cert-v01@openssh.com ssh-dss-cert-v01@openssh.com
 ssh-rsa-cert-v00@openssh.com ssh-dss-cert-v00@openssh.com ssh-rsa
 ssh-ds
 '''.split()
 AVAILABLE_KEX_ALGORITHMS = '''
 diffie-hellman-group-exchange-sha256
 diffie-hellman-group-exchange-sha1 diffie-hellman-group14-sha1
 diffie-hellman-group1-sha1
 '''.split()

 def filter_algorithms(desired, available):
 if available is None:
 return desired
 return [d for d in desired.split(',') if d in available]

 ciphers = ','.join(
 filter_algorithms(ciphers, AVAILABLE_CIPHERS)
)
 macs = ','.join(
 filter_algorithms(macs, AVAILABLE_MACS)
)
 host_key_algorithms = ','.join(
 filter_algorithms(host_key_algorithms, AVAILABLE_HOST_KEY_ALGORITHMS)
)
 kex_algorithms = ','.join(
 filter_algorithms(kex_algorithms, AVAILABLE_KEX_ALGORITHMS)
)

DEFAULTS = dedent("""
 host *
 # Use stronger algorithms
 ciphers {ciphers}
 MACs {macs}
 hostKeyAlgorithms {host_key_algorithms}
 kexAlgorithms {kex_algorithms}
""".format(**locals()))

In this example, the desired algorithms are given first. Then, the algorithms
supported by the older SSH server are given. These can be found by using sss
-Q, or if you version of SSH is too old to support the -Q option, they can
be found by scouring the ssh_config man page. The variable used for the
available algorithms (those in all caps) are interpreted by sshconfig. Any
algorithm that is not specified as being available is stripped from a host entry
when generating the SSH config file. If you do not specify from these variables,
or if they are empty, then no filtering is performed. The available algorithms
are only defined on the older hosts. That is why this section is embedded in
a conditional that is only executed when if local_host_name is either www or
mail. These are the hosts with the old version of SSH.

One more thing to look out for when using older versions of SSH; they may not
support the proxyJump setting. You can generally use ProxyCommand "ssh
<jumphost> -W %h:%p" instead.

Releases

Latest development release

Version: 2.2.1

Released: 2023-11-08

	Added nmcli_connection attribute to the NetworkEntry class.

	Added NMCLI_CONNS setting.

Both these changes support the use of secondary networks, meaning that if your
machine is connected to multiple networks, you can configure a host so that ssh
connects to it directly through a secondary network rather than using the
primary gateway.

2.2 (2022-11-19)

	Make path to arp command user settable.

2.1 (2021-01-18)

	Make path to arp command user settable.

2.1 (2021-01-18)

	Improved the documentation.

2.0 (2020-04-16)

	Improve documentation.

1.3 (2020-03-11)

	Add available SSH algorithms filtering.

	Make SSH settings case insensitive.

	Added shared config files examples.

	Refine identityfile behavior.

	Eliminate tun_trusted.

1.2 (2020-01-07)

	Configuration is now external to the program source code
(it is now in ~/.config/sshconfig).

Index

 nav.xhtml

 Table of Contents

 		
 SSH Config

 		
 Command Reference

 		
 Common Command Line Arguments

 		
 available – Show Available Option Choices

 		
 create – Create the SSH config file

 		
 find – Find an SSH host configuration

 		
 help – Show Helpful Information

 		
 show – Show a SSH Host Configuration

 		
 version – Show SSHConfig Version

 		
 Configuring

 		
 networks.conf

 		
 ssh.conf

 		
 proxies.conf

 		
 locations.conf

 		
 hosts.conf

 		
 Ports

 		
 Attribute Descriptions

 		
 Hostname

 		
 Location

 		
 Forwards

 		
 Guests

 		
 Subclassing

 		
 Examples

 		
 Multiple Clients, Multiple Servers, One Set of Config Files

 		
 One Set of Config Files for a Heterogeneous Environment

 		
 Accessing the Client

 		
 Access Restrictions

 		
 SSH via Tor

 		
 Supporting Hosts with Old Versions of SSH

 		
 Releases

 		
 Latest development release

 		
 2.2 (2022-11-19)

 		
 2.1 (2021-01-18)

 		
 2.1 (2021-01-18)

 		
 2.0 (2020-04-16)

 		
 1.3 (2020-03-11)

 		
 1.2 (2020-01-07)

_static/file.png

_static/minus.png

_static/plus.png

